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Abstract
We exhibit explicit expressions, in terms of components, of discriminants,
determinants, characteristic polynomials and polynomial identities for matrices
of higher rank. We define permutation tensors, and in terms of them we
construct discriminants and the determinant as the discriminant of order d,
where d is the dimension of the matrix. Analogues of the characteristic
polynomials and the Cayley–Hamilton theorem are obtained therefrom for
higher rank matrices.

PACS numbers: 02.10.Hh, 02.10.Yn
Mathematics Subject Classification: 15A24, 15A72

1. Introduction

A matrix A of rank r is an array of numbers Ai1···ir , where the indices i run from 1 to d, the
dimension of the matrix.

For r = 2, we have the ordinary matrices a, that is, square arrays of numbers aij . In this
case, it is possible to define a matrix addition and a matrix multiplication. Then, according
to the Cayley–Hamilton theorem, only the first d powers of a are linearly independent. The
traces of these d powers are a set of invariants which help to characterize the matrix a and
several of its properties.

For r > 2, the situation is different since, even when there is a matrix addition, a natural
matrix multiplication does not exist. The absence of a natural multiplication operation makes
it difficult to introduce concepts analogous to those which are standard in matrix calculus,
namely, traces, invariants, polynomials, etc. Therefore, for matrices of higher rank there
is no result similar to the Cayley–Hamilton theorem. Furthermore, in principle, we have
neither a way of determining the number of algebraically independent invariants (if any), nor
to construct polynomial identities.
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Several results related to invariants and polynomial identities for matrices of higher rank
are known [8, 9]. However, in general, explicit expressions in terms of the components Ai1···ir
are lacking.

The purpose of this paper is to show that, in spite of the absence of a matrix multiplication,
it is possible to define invariants, in fact a finite number d, that it is possible to define a
determinant, and that there exists a polynomial identity similar to the statement of the Cayley–
Hamilton theorem.

Section 2 starts with a reminder of some standard results for ordinary matrices. In this
case, invariants can be obtained, for example, as traces of the powers of the matrix a. Another
family of invariants are the discriminants. Discriminants are a more convenient set of invariants
than traces, since only the first d of them are non-trivial, while the rest are identically zero.
Particularly interesting is the discriminant of order d which corresponds to the determinant of
a. The Cayley–Hamilton theorem is formulated as the condition for the vanishing of a certain
polynomial relation among discriminants and powers of the matrix a. Next, we introduce an
index notation similar to that of tensor calculus, and all matrices are then treated as tensors.
Discriminants can be defined in terms of permutation products constructed from a symmetric
metric tensor g. Since this second definition makes no reference to traces, this definition of
discriminants is best suited than traces for the generalization to higher rank matrices.

In section 3 we consider higher rank matrices. Since there is not a concept similar to
that of a multiplication operation, the construction of invariants must be done by generalizing
definitions which are independent of the concept of multiplication. For instance, discriminants
can be generalized to higher rank matrices if we adopt the definition based on permutation
products. The even-rank and the odd-rank cases must be studied separately. For even-rank
matrices the fourth-rank matrices are the prototype. By using permutation products, we
construct the corresponding discriminants and define the determinant as the discriminant of
order d. Then we show that a certain polynomial relation among discriminants and products
of the matrix A vanishes identically, which is a statement similar to the Cayley–Hamilton
theorem. For odd-rank matrices, a naive generalization of the results above leads to useless
relations. Instead, we show that in this case it is necessary to introduce an even-rank matrix as
the direct product of the original odd-rank matrix and construct discriminants and polynomial
identities as for the even-rank case.

Section 4 is dedicated to the conclusions. For the sake of simplicity in the present work,
we restrict our considerations to completely symmetric matrices and tensors. Generalizations
to other situations (other ranks and more general symmetries) are easy to implement, but we
refrain to exhibit them for they do not add any new understanding to the problem.

Some preliminary and incomplete results, similar to the ones reported here, can be found
in [20]. In that work our emphasis was on the construction of invariants using a graphical
algorithm based on semi-magic squares. However, the rigorous mathematical justification for
that algorithm is the invariants constructed with matricial properties alone as exhibited here.

2. Preliminaries

Due to the nature of our approach, we must regretfully bore the reader by exhibiting
some standard and well-known results that are needed to show how the concepts of
invariant, discriminant, determinant, characteristic polynomials, polynomial identities, and
other concepts of matrix calculus, correctly generalize to matrices of a higher rank. Even
when these results can be found in standard references, see for example [9], we include them
here because we need them written in very particular forms (which are not to be found in
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a unique reference) which make easier, even conceptually, the passage to matrices of higher
rank.

2.1. Basic definitions and results

A matrix a is a square array of numbers aij , with i, j = 1, . . . , d, where d is the dimension of
the matrix. Let b be a second matrix with components bij . Then, the matrix multiplication is
defined by the product matrix c = a · b with components

cij =
d∑

k=1

aikbkj . (1)

This operation is the Cartesian product among rows and columns. The unit element I for the
matrix multiplication, a · I = I · a = a, is the matrix with components Iij given by

Iij =
{

1, for i = j ;
0, otherwise.

(2)

The determinant of a, det(a), is given by the Leibniz formula

det(a) =
∑
π∈Sd

sign(π)

(
d∏

i=1

aiπ(i)

)
. (3)

If the determinant (3) is different from zero, then there exists an inverse matrix a−1 satisfying
a−1 · a = a · a−1 = I. In terms of components, we have

d∑
k=1

(a−1)ikakj =
d∑

k=1

aik(a
−1)kj = Iij . (4)

Then the inverse matrix is given by

a−1 = adj(a)

det(a)
, (5)

where adj(a) is the adjoint matrix.
The product of a matrix a with itself, that is a2, is the matrix with components

(a2)ij =
d∑

k=1

aikakj . (6)

Powers of a of an order s, as , are the matrices with components

(as)ij =
d∑

k1=1

. . .

d∑
ks−1=1︸ ︷︷ ︸

s−1 times

aik1 . . . aks−1j︸ ︷︷ ︸
s times

. (7)

By definition, a0 = I and a1 = a. The trace of a matrix a is given by

tr(a) =
d∑

i=1

aii . (8)

The trace of as is given by

tr(as) =
d∑

i=1

(as)ii . (9)

Furthermore, tr(a0) = d.
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Let us now consider the eigenvalue problem

[a − λI]v = 0. (10)

The condition for the existence of a solution is

det[a − λI] = 0. (11)

From here it follows that the eigenvalues are related to the traces by

tr(as) =
d∑

k=1

λs
k. (12)

An invariant is a quantity which does not change under similarity transformations.
Invariants are important because they help to characterize a matrix a and several of its
properties. Examples of invariants are traces (9).

Discriminants are another family of invariants which are constructed as follows. Let
us consider a vector �λ = λ1, λ2, . . . , with an infinite number of components. Then, the
elementary symmetric products P are defined by

Ps(�λ) =
∑

k1 �=···�=ks

λk1 . . . λks
. (13)

The power sums Q are defined by

Qs(�λ) =
∞∑

k=1

λs
k. (14)

Elementary symmetric products and power sums are related by

P0 = 1,

P1 = Q1,

P2 = 1

2

[
Q2

1 − Q2
]
,

P3 = 1

3!

[
Q3

1 − 3Q1Q2 + 2Q3
]
,

P4 = 1

4!

[
Q4

1 − 6Q2
1Q2 + 8Q1Q3 + 3Q2

2 − 6Q4
]
,

P5 = 1

5!

[
Q5

1 − 10Q3
1Q2 + 15Q1Q

2
2 + 20Q2

1Q3 − 20Q2Q3 − 30Q1Q4 + 24Q5
]
,

P6 = 1

6!

[
Q6

1 − 15Q4
1Q2 + 45Q2

1Q
2
2 − 15Q3

2 + 40Q3
1Q3 − 120Q1Q2Q3 + 40Q2

3

− 90Q2
1Q4 + 90Q2Q4 + 144Q1Q5 − 120Q6

]
. (15)

These are the Newton relations.
If only the first d components of �λ are different from zero, then Ps ≡ 0 for s > d.
Therefore, traces are in correspondence with elementary symmetric products. In order to

complete the correspondence and following relations (15), the discriminants of a matrix a are
defined by

c0(a) = 1,

c1(a) = 〈a〉,
c2(a) = 1

2
[〈a〉2 − 〈a2〉],
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c3(a) = 1

3!
[〈a〉3 − 3〈a〉〈a2〉 + 2〈a3〉],

c4(a) = 1

4!
[〈a〉4 − 6〈a〉2〈a2〉 + 8〈a〉〈a3〉 + 3〈a2〉2 − 6〈a4〉],

c5(a) = 1

5!
[〈a〉5 − 10〈a〉3〈a2〉 + 15〈a〉〈a2〉2 + 20〈a〉2〈a3〉− 20〈a2〉〈a3〉− 30〈a〉〈a4〉 + 24〈a5〉],

c6(a) = 1

6!
[〈a〉6 − 15〈a〉4〈a2〉 + 45〈a〉2〈a2〉2 − 15〈a2〉3 + 40〈a〉3〈a3〉 − 120〈a〉〈a2〉〈a3〉

+ 40〈a3〉2 − 90〈a〉2〈a4〉 + 90〈a2〉〈a4〉 + 144〈a〉〈a5〉 − 120〈a6〉], (16)

etc, where 〈·〉 = tr(·). Discriminants of a square matrix are not so widely known objects.
They appear in the literature under different names or indirectly in several contexts.

Discriminants (16) satisfy the remarkable recurrence relation

∂cs(a)

∂a
· a − cs(a)I = −∂cs+1(a)

∂a
, (17)

where (∂cs(a)/∂a) is the matrix with components(
∂cs(a)

∂a

)
ij

= ∂cs(a)

∂aij

. (18)

We can state the Cayley–Hamilton theorem as follows.

Theorem (Cayley–Hamilton). A d-dimensional matrix a satisfies

∂cd(a)

∂a
· a − cd(a)I ≡ 0. (19)

This result follows from (17), for s = d, reminding that cd+1(a) ≡ 0. For the first values
of d, the explicit statement of the Cayley–Hamilton theorem is

a − c1(a)I ≡ 0,

a2 − c1(a)a + c2(a)I ≡ 0,

a3 − c1(a)a2 + c2(a)a − c3(a)I ≡ 0,

a4 − c1(a)a3 + c2(a)a2 − c3(a)a + c4(a)I ≡ 0,

(20)

etc.
According to the Cayley–Hamilton theorem, only the first d powers of a are linearly

independent. Therefore, only d of the traces (9) are algebraically independent. The ideal
situation would be therefore to have a family of invariants such that only d of them are non-
trivial and algebraically independent. Discriminants have this property. For a d-dimensional
matrix, only the first d discriminants are non-trivial, while the discriminants of an order higher
than d are identically zero, cs(a) ≡ 0, for s > d. This result is equivalent to the Cayley–
Hamilton theorem. This reformulation of the Cayley–Hamilton theorem is possible because
we can establish an equivalence between traces, power sums, elementary symmetric products
and then cs ≡ 0. Therefore, from now on, our fundamental family of invariants are the
discriminants.

If cd(a) �= 0, then from (19) follows that there exists an inverse matrix a−1 which is given
by

a−1 = 1

cd(a)

∂cd(a)

∂a
. (21)
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In terms of components this inverse matrix is given by

(a−1)ij = 1

cd(a)

∂cd(a)

∂aij

. (22)

We have two algorithms to compute the inverse of a matrix a:

(A1) The first one is based on (4). In that case, we have n2 unknowns (a−1)ij and n2 equations.
The condition to have a solution is det(a) �= 0.

(A2) The second algorithm is based on the discriminant cd(a). If cd(a) �= 0, then the inverse
matrix is given by (21).

If λ1, . . . , λd are the eigenvalues of the matrix a, then cd(a) = λ1 · · · λd , which is the
definition of the determinant of a. Therefore, cd(a) = det(a). This result explains why cd(a)

and det(a), even when constructed with different algorithms lead to the same inverse matrix,
namely (5) and (21). For simplicity, we denote a = det(a) = cd(a). Then, equation (21) is
rewritten as

a−1 = 1

a

∂a

∂a
. (23)

For ordinary matrices, a, the two previous algorithms are equivalent and yield the same
inverse matrix a−1. However, for higher rank matrices only the second algorithm, based
on (21), admits a generalization.

2.2. Matrices and tensors

For the purpose of generalization to higher rank matrices, it is convenient to represent matrices
by means of tensors. We adopt the index notation of tensor calculus. In this case, it is necessary
to distinguish between covariant and contravariant indices. According to this scheme, a matrix
a becomes represented by a second-rank covariant tensor a with components aij . Also we
will need to consider contravariant tensors b−1 with components bij . Furthermore, we adopt
the summation convention according to which an index is summed up over its rank, if it
appears once as a covariant index and once as a contravariant index; for example, aikb

kj means∑d
k=1 aikb

kj .
Let a be a covariant tensor with components aij . The unit element e for the tensor

multiplication is a tensor with components ei
j given by

ei
j = δi

j =
{

1, for i = j ;
0, otherwise.

(24)

The inverse a−1 is a tensor with components (a−1)ij such that

(a−1)ikajk = δi
j . (25)

Since the inverse tensor is a contravariant tensor the notation (a−1)ij becomes redundant;
therefore, we simply write aij for the components of the inverse tensor. For example, in terms
of components, equation (23) becomes

aij = 1

a

∂a

∂aij

, (26)

while equation (25) becomes

aikajk = δi
j . (27)

The variation of this equation gives

aikδajk + δaikajk = 0. (28)
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Therefore, variations with respect to the covariant components of a tensor and with respect
to the components of the inverse tensor (contravariant) have opposite signs.

In order to define a multiplication operation in a tensor language, it is necessary to
introduce a metric tensor, that is, a symmetric second-rank tensor g with components gij = jji .
If g = det(g) �= 0, then there exists an inverse g−1 with components gij . If a and b are covariant
tensors with components aij and bij , the multiplication operation is defined by the product
tensor c with components

cij = aikg
lkblj . (29)

The trace is defined as

trg(a) = gij aij . (30)

The definition of the trace in terms of the same metric tensor g used for the multiplication
is necessary in order to preserve the property of cyclicity of the trace.

In order to agree with (1), it would be necessary to choose

gij =
{

1, if i = j ;
0, otherwise.

(31)

However, this definition does not have an invariant tensorial meaning, and therefore it is
better to keep working with a generic metric tensor g−1 with components gij unrelated to (31).

2.3. Permutation products and discriminants

For higher rank matrices neither a natural multiplication operation nor a natural extension of
the concept of a trace do exist. Therefore, we need to elaborate a definition of discriminants
without making reference to multiplications or traces, and, in such a way, that the resulting
definition reduces to the usual definition for matrices of second rank and is easily generalizable
to matrices of higher rank. To this purpose, we define permutation products in terms of g. As
a motivation and justification to do so, we start by considering the definition in tensor calculus
of the determinant of a tensor a.

The Levi-Civita symbol is defined by

εi1···id =




1 if i1 · · · id is an even permutation of 1 · · · d;
−1 if i1 · · · id is an odd permutation of 1 · · · d;
0 if i1 · · · id is not a permutation of 1 · · · d.

(32)

Then, the determinant of a tensor a with components aij is given by

det(a) = 1

d!
εi1···id εj1···jd ai1j1 · · · aidjd

. (33)

Substituting (33) in (26), we obtain the explicit expression

aij = 1

(d − 1)!

1

a
εii1···i(d−1) εjj1···j(d−1)ai1j1 . . . ai(d−1)j(d−1)

. (34)

We can verify that aij so defined satisfies (27). It can also be verified that equation (34)
is equation (5) written in terms of components.

Therefore, for second-rank covariant tensors the discriminants can be constructed with
the use of g for products and traces, as in (29) and (30), and the definitions for discriminants
in (16). However, for the determinant, which corresponds to the discriminant cd(a), we
have (33) which involves a alone and that makes no reference to g. In order to avoid and
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explain this duplicity, we develop a unified scheme to construct discriminants and which is
well suited for the generalization to higher rank matrices.

Let g be a symmetric metric tensor with components gij and define the permutation tensors
q by

qi1j1···is js

s (g) = 1

s!(d − s)!

1

g
εi1···is is+1···id εj1···jsjs+1···jd gis+1js+1 . . . gid jd

. (35)

The tensors q are non-trivial only for s � d, and qs ≡ 0 for s > d. We define the
discriminants c

g
s (a) for a tensor a by

cg
s (a) = qi1j1···is js

s (g)ai1j1 . . . aisjs
. (36)

Then, the discriminants c
g
s (a) are given by

cg
s (a) = 1

s!(d − s)!

1

g
εi1···is is+1···id εj1···jsjs+1···jd ai1j1 . . . aisjs

gis+1js+1 . . . gid jd
. (37)

For second-rank tensors, the case under consideration, the permutation tensors (35) can
be rewritten as

qi1j1···is js

s (g) = 1

s!
g|[i1j1 . . . gisjs ]|, (38)

where |[· · ·]| denotes complete antisymmetry with respect to the indices j ’s or, equivalently,
with respect to the indices i’s. For the first values of s, the tensors q are given by

q
ij

1 (g) = gij ,

q
i1j1i2j2
2 (g) = 1

2
(gi1j1gi2j2 − gi1j2gi2j1),

q
i1j1i2j2i3j3
3 (g) = 1

3!
[gi1j1gi2j2gi3j3 − (gi1j1gi2j3gi3j2 + gi1j3gi2j2gi3j1 + gi1j2gi2j1gi3j3)

+ (gi1j2gi2j3gi3j1 + gi1j3gi2j1gi3j2)], (39)

etc. When we restrict g to (31), (37) reduces to relations (16) with 〈·〉 = trg(·); therefore this
is a valid generalization of the discriminants.

We can verify that

∂
(
gc

g
s (a)

)
∂g

= ∂
(
gc

g
s+1(a)

)
∂a

, (40)

and from here it follows that

∂c
g
s (a)

∂g
+ cg

s (a)g−1 = ∂c
g
s+1(a)

∂a
. (41)

This is a recurrence relation analogous to (17). There is a sign change in this equation as
compared with (17); this is due to the fact that c

g
s (a) depends on g−1 and, from a tensor point

of view, the variations with respect to the covariant and contravariant components of a same
tensor have opposite signs, as shown in (28).

We can now reformulate the Cayley–Hamilton theorem as follows.

Theorem (Cayley–Hamilton). A d-dimensional tensor a satisfies

∂c
g
d(a)

∂g
+ c

g
d(a)g−1 ≡ 0. (42)

This result follows from (41), for s = d, reminding that c
g
d+1(a) ≡ 0.

There are two particularly interesting instances of relation (42).
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(B1) The first case appears if we insist on g−1 as given in (31) in an attempt to reproduce the
standard results. Then, the relations in (42) reduce to the relations of matrix calculus
given by (20).

(B2) The second case appears if we want to have expressions concomitant of a alone. In this
case, the only possible choice is g = a. However, all relations in (42) collapse to useless
identities.

The generalization of the first case to higher rank matrices is excluded since it is not possible
to define a symmetric metric tensor g similar to an identity or unit matrix in an invariant way.
On the other hand, the generalization of the second case is possible and is the one which gives
rise to discriminants and to a theorem similar to the Cayley–Hamilton theorem for higher rank
matrices.

The components of qd are completely antisymmetric in the d indices i and j . Therefore,
they must be the product of Levi-Civita symbols in those indices

q
i1···id j1···jd

d (g) = 1

d!
g|[i1j1 . . . gid jd ]| = 1

g

1

d!
εi1···id εj1···jd . (43)

Then, we obtain

c
g
d(a) = 1

g

1

d!
εi1···id εj1···jd ai1j1 . . . aid jd

= a

g
. (44)

Now, it is not possible to obtain a−1 from (42), as was done in (19) and (21). However, it
is still possible to apply definition (23). To this purpose, let us denote ag = c

g
d(a) = a/g. If

a �= 0 and g �= 0, we obtain

a−1 = 1

a

∂a

∂a
= 1

ag

∂ag

∂a
. (45)

This relation explains why the determinant, as defined in (33) (which does not involve g),
gives the same inverse tensor as c

g
d(a).

From (42), we obtain

g−1 = − 1

c
g
d(a)

∂c
g
d(a)

∂g
= 1

g

∂g

∂g
. (46)

The sign change in the last equality is due to the fact that c
g
d(a) = a/g = (g/a)−1 =[

ca
d(g)

]−1
.

Case (B2) above refers to equation (42), that is, the replacement g = a is done only after
the characteristic polynomial has been explicitly evaluated; otherwise, from (44) we would
obtain c

g
d(g) = g/g = 1 and the derivative in equation (42) would be zero while the second

term is not.

3. Higher rank matrices

The concept of a higher rank matrix, and the corresponding determinant, was introduced by
Cayley [5] and it was later developed by Schläfli [18] and by Pascal [16]. More recently,
matrices of higher rank have been studied in [7–9, 23–25]. Particularly interesting are [8, 9]
where a general account on the subject, with many generalizations and applications, can be
found. The interested reader may refer to these references for further detail.

For higher rank matrices, there is not a natural multiplication operation in the sense that the
product of two higher rank matrices be a matrix of the same rank and covariance. Therefore,
the construction of discriminants must be done by generalizing a definition of discriminants
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which do not involve any multiplication operation. The definition of discriminants in terms
of permutation products satisfies this requirement, but even-rank and odd-rank cases must be
considered separately. For the even-rank case, we take the fourth-rank case as a prototype.
Then, we construct discriminants, the determinant, and show that a polynomial relation among
discriminants and products of the higher rank matrix vanishes identically, which is a statement
similar to the Cayley–Hamilton theorem. This algorithm can be easily extended to matrices of
any arbitrary even rank. For the odd-rank case, we consider third-rank matrices as a prototype
and show that in this case it is necessary to introduce an even-rank matrix constructed as the
direct product of the odd-rank matrix. Then, discriminants, the determinant and a Cayley–
Hamilton-like theorem follow as for the even-rank case.

Let us remind once again that higher rank matrices will be represented by higher rank
tensors. Therefore, we will talk, mostly, of tensors rather than matrices.

3.1. The even-rank case

We consider fourth-rank matrices as a representative of even-rank matrices; all other even-rank
cases can be dealt with in a similar way.

The simplest extension of the concept of determinant to matrices of higher rank is the one
due to Cayley, which is a direct generalization of the Leibniz formula, namely,

detC(A) =
∑

π2···πr∈Sd

sign(π2 . . . πr)

(
d∏

i=1

Aiπ2(i)···πr (i)

)
. (47)

Then, the determinant of a fourth-rank tensor A with components Aijkl is defined as a
direct generalization of (33), namely,

det(A) = 1

d!
εi1···id . . . εl1···ld Ai1j1k1l1 . . . Aidjdkd ld . (48)

As before, we simplify the notation by writing A = det(A). In analogy with (23), we
define

A−1 = 1

A

∂A

∂A
. (49)

In terms of components

Aijkl = 1

A

∂A

∂Aijkl

. (50)

Then

Aijkl = 1

(d − 1)!

1

A
εii1···i(d−1) . . . εll1···l(d−1)Ai1j1k1l1 . . . Ai(d−1)j(d−1)k(d−1)l(d−1)

. (51)

This higher rank tensor satisfies

Aik1k2k3Ajk1k2k3 = δi
j , (52)

which is a relation similar to (27). The definitions in (48) and (51) were used in previous
works [19, 21, 22] concerning the application of fourth-rank geometry in the formulation of
an alternative theory for the gravitational field.

As an example, let us consider the simple case d = 2. Determinant (48) is given by

A = A0000A1111 − 4A0001A0111 + 3A2
0011. (53)
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The components of the inverse matrix A−1 are given by

A0000 = 1

A
A1111,

A0001 = − 1

A
A0111,

A0011 = 1

A
A0011.

(54)

and similar expressions for the other components. In order to verify the validity of
equation (52), let us consider the cases (00) and (01). We obtain

A0ijkA0ijk = 1, A0ijkA1ijk = 0, (55)

and similar relations for the other indices.
In a way similar to (35), we define the permutation tensors Q by

Qi1j1k1l1···is jsks ls
s (G) = 1

s!(d − s)!

1

G
εi1···is is+1···id εj1···jsjs+1···jd εk1···ksks+1···kd εl1···ls ls+1···ld

×Gis+1js+1ks+1ls+1 . . . Gidjdkd ld , (56)

where G = det(G). The tensors Q are non-trivial only for s � d, and Qs ≡ 0 for s > d.
Then, we define the discriminants CG

s (A) by

CG
s (A) = Qi1j1k1l1···is jsks ls

s (G)Ai1j1k1l1 · · ·Aisjsks ls . (57)

Explicitly,

CG
s (A) = 1

s!(d − s)!

1

G
εi1···is is+1···id εj1···jsjs+1···jd εk1···ksks+1···kd εl1···ls ls+1···ld

×Ai1j1k1l1 . . . Aisjsks ls Gis+1js+1ks+1ls+1 . . . Gidjdkd ld . (58)

Then, in a way similar to (41), it is possible to verify that the discriminants CG
s (A) satisfy

the recurrence relation

∂CG
s (A)

∂G
+ CG

s (A)G−1 = ∂CG
s+1(A)

∂A
. (59)

Then, we have

Theorem. A d-dimensional tensor A of fourth-rank satisfies

∂CG
d (A)

∂G
+ CG

d (A)G−1 ≡ 0. (60)

This result is an analogous of the Cayley–Hamilton theorem of the previous section.
However, it refers now to a polynomial identity between the components of a higher rank
tensor. We do not know about any polynomial identity of this kind in the literature. Therefore,
the result contained in the theorem is the first one of this kind.

The components of Qd are completely symmetric in indices i, j, k and l; therefore, they
must be the product of Levi-Civita symbols. We then have

Q
i1j1k1l1···id jdkd ld
d (G) = 1

G

1

d!
εi1···id . . . εl1···ld , (61)

which is the result similar to (43). Therefore,

CG
d (A) = A

G
. (62)
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The inverse tensor A−1 is obtained from (49). Let us denote AG = CG
d (A) = A/G. If

A �= 0 and G �= 0, we obtain

A−1 = 1

A

∂A

∂A
= 1

AG

∂AG

∂A
, (63)

which is the relation similar to (45).
There is one particularly interesting instance of relations (60). If we want to have

expressions concomitant of A alone, then the only possible choice is G = A. To this purpose,
it is useful to observe that if s = d, and only in this case, the permutation tensors (56) can be
written in a way similar to (38), namely,

Q
i1j1k1l1···id jdkd ld
d (G) = 1

d!
G|[i1j1k1l1 . . . Gidjdkd ld ]|. (64)

As an example of the results above let us consider the case d = 2. For the tensor Q2, we
obtain

Q
i1j1k1l1i2j2k2l2
2 (G) = 1

2
[Gi1j1k1l1Gi2j2k2l2 − (Gi1j1k1l2Gi2j2k2l1 + Gi1j1k2l1Gi2j2k1l2

+ Gi1j2k1l1Gi2j1k2l2 + Gi2j1k1l1Gi1j2k2l2) + (Gi1j1k2l2Gi2j2k1l1

+ Gi1j2k1l2Gi2j1k2l1 + Gi2j1k1l2Gi1j2k2l1)]. (65)

The determinant is given by

CG
2 (A) = 1

2 [(GijklAijkl)
2 − 4GijklAjklmGmnpqAnpqi + 3GijklAklmnG

mnpqApqij ], (66)

Finally, the corresponding polynomial identity is given by

(GmnpqAmnpq)Aijkl − 4A(i|mnpGmnpqAq|jkl) + 3A(ij |mnG
mnpqApq|kl) − CG

2 (A)Gijkl = 0. (67)

If we choose G = A relation (67) reduces to

A(ij |mnA
mnpqApq|kl) − 1

2 (AmnpqApqrsA
rstuAtumn)Aijkl ≡ 0, (68)

where (·) means that the enclosed indices are symmetrized and | · | means that the enclosed
indices are excluded from the symmetrization.

3.2. The odd-rank case

We consider third-rank matrices as a representative of odd-rank matrices; all other odd-rank
cases can be dealt with in a similar way.

Let s be a third-rank tensor with components sijk . A naive definition of the determinant
would be the natural generalization of (33) and (48), namely,

det(s) = 1

d!
εi1···id . . . εk1···kd si1j1k1 . . . sid jdkd

. (69)

However, it is possible to verify that

εi1···id . . . εk1···kd si1j1k1 . . . sid jdkd
≡ 0. (70)

This result is due to the odd number of ε’s in (69) which add all contributions to zero.
In order to obtain some indication as to the correct way to define a determinant for odd-

rank tensors, let us consider the simple case of a completely symmetric third-rank tensor s with
components sijk in dimension d. Then, let us look for an inverse tensor s−1 with components
sijk such that a relation similar to (27) and (52) holds, namely,

siklsjkl = δi
j . (71)
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The number of unknowns in (71) is d(d + 1)(d + 2)/6, while the number of equations is
d2. This algebraic system of equations is underdetermined, except for d = 2. In this last case,
the solution is given by

s000 = 1

s2

(
s000s

2
111 + 2s3

011 − 3s001s011s111
)
,

s001 = 1

s2

(
2s111s

2
001 − s000s011s111 − s001s

2
011

)
,

(72)

and similar relations for the other components, where

s2 = s2
000s

2
111 − 6s000s001s011s111 + 4s000s

3
011 + 4s111s

3
001 − 3s2

001s
2
011. (73)

Let us observe that

s000 = 1

2s2

∂s2

∂s000
= 1

s

∂s

∂s000
, s001 = 1

3

1

2s2

∂s2

∂s001
= 1

3

1

s

∂s

∂s001
, (74)

leading to

sijk = 1

2s2

∂s2

∂sijk

= 1

s

∂s

∂sijk

. (75)

Therefore, the role of the determinant, in a way similar as appears in (26) and (50), is
played by s.

For any matrix S, the product of ε’s and S’s is a meaningful quantity only for an expression
in which S is an even-rank tensor. Then s2 must be related to the determinant of some higher
even-rank tensor S, and this determinant must be a quadratic expression (since d = 2) in this
higher rank tensor S. Since s2 is a quartic expression in s, we have that S must be quadratic
in s. A solution satisfying the requirements above is given by

Si1j1k1i2j2k2 = s(i1j1k1si2j2k2). (76)

For d = 2, we obtain

S000000 = s2
000,

S000001 = s000s001,

S000011 = 1

5

(
2s000s011 + 3s2

001

)
,

S000111 = 1

19
(s000s111 + 9s001s011),

(77)

and similar relations for the other components.
The determinant of a sixth-rank tensor S with components Si1i2i3i4i5i6 is defined through a

direct extension of the definition in (48). We obtain

S = 1

d!
εi1···id . . . εn1···nd Si1···n1 . . . Sid ···nd

. (78)

In the two-dimensional case, this determinant is given by

S = S000000S111111 − 6S000001S111110 + 15S000011S111100 − 10S2
000111. (79)

If we replace (77) in (79), we obtain, up to an irrelevant multiplicative constant,
expression (73).

Therefore, for odd-rank matrices the recipe is to construct an even-rank matrix as the
direct product of the original matrix. Then, the construction of invariants proceeds as for the
even-rank case.
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4. Concluding remarks

We have developed an algorithm to construct invariants for higher rank matrices. We
constructed determinants and exhibit an extension of the Cayley–Hamilton theorem to higher
rank matrices.

Among the possible applications of the present work, we have the quantum mechanics
of entangled states. Indeed, in order to obtain a measurement of entanglement one needs to
construct invariants associated with higher rank matrices; see [1, 3, 4, 6, 10–15] for several
interesting results.

Higher rank tensors, which look similar to higher rank matrices, appear in several contexts
such as in Finsler geometry [2, 17] and in fourth-rank gravity [19, 21, 22]. The results presented
here are a first step for the construction of differential invariants for higher rank tensors.
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